
Implementation of a New Scheduling Policy in Web Servers

A Thesis
Submitted to

The Faculty of Information Technology

by

Ahmad S. Al-Sa�deh

In Partial Ful�llment
of the Requirements for the Degree

Master of Science

Supervisor
Prof. Adnan H. Yahya

Graduate Program in Scienti�c Computing
Birzeit University

July 2007

Implementation of a New Scheduling Policy in Web Servers

Approved by:

Prof. Adnan Yahya, Advisor
Computer System Engineering Department,
Birzeit University, Palestine.

Dr. Hussein Badr
Associate Professor,
Computer Science Department,
Stony Brook University, USA.

Dr.Bassem Sayra�
Assistant Professor,
Computer Science,
Birzeit University, Palestine.

Date Approved

To my parents

To my wife

To my brothers and sisters

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Professor Adnan Yahya for his

inspiration and encouragement during my graduate education. He was very patient and

always provided his excellent guidance in helping me to complete this thesis. I would like

to convey my sincere thanks to Dr. Hussein Badr for the time he spent sharing his vast

wealth of knowledge with me.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

I INTRODUCTION . 1

1.1 Statement of the problem . 2

1.2 Problems with existing algorithms . 2

1.3 Response time components . 3

1.4 Our approach . 5

1.5 Organization of the thesis . 6

II LITERATURE REVIEW . 7

2.1 Web server request scheduling . 7

2.1.1 Web sever scheduling implementation: 7

2.1.2 Web sever scheduling simulation studies: 8

2.1.3 Web sever scheduling theoretical studies: 9

2.2 Admission control and service di¤erentiation 10

III IMPLEMENTATION OF SRRT . 12

3.1 Di¤erentiated services and tra¢ c control in Linux 12

3.1.1 Default Linux qdisc . 13

3.1.2 prio qdisc to implement SRRT . 15

3.2 Modi�cations to Apache web server to implement SRRT 19

3.3 Using TCP protocol information to implement SRRT 21

3.3.1 Data transmission over TCP . 21

3.3.2 TCP congestion control . 22

3.3.3 TCP time-out and round trip time 24

3.3.4 Approximating the remaining response time for the TCP connection 25

3.3.5 The �nal SRRT algorithm . 26

v

IV EXPERIMENT SETUP . 28

4.1 Benchmarking web server . 28

4.2 The bottleneck . 28

4.2.1 Network connection . 29

4.2.2 Client machines . 30

4.2.3 The server . 30

4.3 Experiment setup . 30

4.4 Workload tra¢ c generators . 31

4.4.1 Performance metrics . 31

4.4.2 Workload generators . 32

4.4.3 SURGE: Workload generator for web tra¢ c 32

4.5 Network emulation . 35

4.6 Tuning parameters . 36

4.6.1 Tuning Apache web server . 36

4.6.2 Tuning the operating system at the server 37

V RESULTS AND ANALYSIS . 39

5.1 Experiment run . 39

5.2 Important comments . 41

5.3 Main results . 42

5.3.1 Results for 10Mbps link capacity 44

5.3.2 Results for 100Mbps link capacity 49

5.3.3 Starvation analysis . 50

5.3.4 Sources of performance of SRRT over SRPT 51

VI CONCLUSION AND FUTURE WORK 53

REFERENCES . 55

APPENDIX A � SHORTEST TOTAL ESTIMATED RESPONSE TIME
(STERT) . 60

APPENDIX B � APACHE SOURCE CODE MODIFICATIONS . . . 62

B.2.2 Changes to http_core.c �le . 64

vi

LIST OF TABLES

1 Distributions used in the workload generator from [32] 34

2 De�nition of WANs parameters . 41

3 Percentage improvement of SRRT and SRPT 43

4 Average improvement percentage for 10Mbps link 47

5 Max. improvement percentage for 10Mbps link 47

6 Average improvement percentage for 100Mbps link 49

7 Max. improvement percentage for 100Mbps link 49

vii

LIST OF FIGURES

1 Client-server interaction over the Internet 4

2 Tra¢ c contol elements [38] . 13

3 Defualt Linux qdisc(p�fo_fast) . 14

4 priomap as assigned by the kernel [40] . 16

5 prio qdisc to implement SRRT and SRPT 17

6 Tra¢ c control tree . 18

7 Network layout for Web server benchmarking 29

8 Experiment setup . 31

9 Representation of a request form [32] . 33

10 Distribution of the requests and bytes . 40

11 Linux tra¢ c control (ingress and egress) 41

12 Mean response time of all WANs under 10Mbps and 100Mbps 43

13 Mean response time as a function of workload for di¤erent WANs through
10Mbps link . 45

14 Mean response time as a function of workload for di¤erent WANs through
100Mbps link . 46

15 Average improvement of SRRT and SRPT over PS for 10Mbps link 48

16 Average improvement of SRRT and SRPT over PS for 100Mbps link 50

17 Mean response time of all WANs under 10Mbps and 100Mbps 61

viii

LIST OF ABBREVIATIONS

ACK : Acknowledgement

ADSL : Asymmetric Digital Subscriber Loop

bps : Bits Per Second

cbq : Class Based Queue

CPU : Central Processing Unit

CT : Current Time

cwnd : Congestion Window

Di¤serv : Di¤erentiated Service

ET : Elapsed Time

FCF : Fastest Connection First

FIFO : First In, First Out

FS : File Size

FSP : Fair Sojourn Protocol

HTTP : Hypertext Transfer Protocol

IOBUFSIZE : Input Output Bu¤er Size

IP : Internet Protocol

LAN : Local Area Network

MB : Megabyte

MSS : Maximum Segment Size

netem : Network Emulation

NIC : Network Interface Card

NIST : National Institute of Standard and Technology

p�fo_fast : Packet First-In, First-Out

prio : Priority

PS : Processor Sharing

qdisc : Queuing Disciplines

QoS : Quality of Service

ix

RAM : Random Access Memory

RFS : Remaining File Size

RRT : Remaining Response Time

RST : Request Start Time

RT : Response time

RTT : Round-Trip Time

SEDA : Staged Event-Driven Architecture

sfq : Stochastic Fair Queuing

SPEC : System Performance Evaluation Cooperative

SRPT : Shortest Remaining Processing Time

SRRT : Shortest Remaining Response Time

SSL : Secure Socket Layer

ssthresh : Slow Start Threshold

STERT : Shortest Total Estimated Response Time

SURGE : Scalable URL Request Generator

SYN : Synchronize sequence numbers

tbf : Token Bucket Flow

tc : Tra¢ c Control

TCP : Transmission Control Protocol

TERT : Total Estimated Response Time

TOS : Type of Service

UE : User Equivalents

URL : Uniform Resource Locator

WAN : Wide Area Network

WWW : World Wide Web

x

ABSTRACT

A widely encountered problem in web servers over the Internet is the long response

time. It is possible to reduce the response time of requests at a web server by simply

changing the order in which we schedule the requests. Recently, the Shortest-Remaining-

Processing-Time (SRPT) has been proposed for scheduling requests in web servers. The

SRPT assumes that the response time of the requested �le is strongly proportional to its

size. However, depending only on the size of the �le for determining the priority of the

request is not enough, since it doesn�t take into consideration the client-server interaction

through the Internet, where web servers are mainly used. In the Internet, the clients are

geographically dispersed which presents high diversity in path bandwidth, round-trip time

and packet loss characteristics. To account for these parameters, this thesis proposes a new

scheduling policy for processing static HTTP requests in web servers that better estimates

the response time. We call this policy, Shortest-Remaining-Response-Time (SRRT).

Our approach bene�ts from the TCP implementation to capture useful scheduling infor-

mation about the interaction between the server and the client through the network. The

SRRT prioritizes requests based on a combination of the current Round-Trip-Time (RTT),

TCP window size and the size of what remains of the requested �le. The requests which

have the shortest estimated remaining response time receive higher priorities.

The implementation is done at the kernel level for controlling the order in which socket

bu¤ers are drained into the network. Our experiment uses the Linux operating system and

the Apache web server. In the experiment the requests are generated by the Scalable URL

Request Generator (SURGE) workload generator, and the WAN is represented by Network

Emulation (netem).

We compare SRRT to SRPT and processor-sharing (PS) policies. SRRT and SRPT

show an improvement over PS. However, the SRRT shows the best improvement in the

xi

mean response time. SRRT gives an average improvement of about 7.5% over SRPT for

both 10Mbps and 100Mbps links and under all loads. For 10Mbps link, the maximum

improvement of SRRT over SRPT is 13.2%. While for the 100Mbps link the maximum

improvement is 11.6%.

This improvement comes at a negligible expense in response time for long requests. We

found that under 100Mbps link, only 1.5% of long requests have longer response times. The

longest request under SRRT has an increase in response time by a factor 1.7 over PS. For

10Mbps link, only 2.4% of requests are penalized, and SRRT increases the longest request

time by a factor 2.2 over PS.

xii

CHAPTER I

INTRODUCTION

In the past few years the World Wide Web (WWW) has become extremely popular; not

only for communication and browsing but also for conducting business and selling on the

Internet. Internet tra¢ c continues to increase rapidly, having almost doubled every year

since 1997 [1]. Also the number of Internet users increases by the day. The growth in

the Internet users increases at an annual rate of 18% and is estimated at one billion users

in 2005 [2]. A second billion users will join in the next ten years [2]. In June 2007, the

Internet usage reaches to 1,133,408,294 users [3]. A popular web site like google.com received

91 millions web searches per day in the United States in March 2006 [4].

As the demand on the Internet/web servers grows; the web servers performance becomes

important objects of study and evaluation. Today busy web servers are required to service

many clients simultaneously, sometimes up to tens of thousands of concurrent clients [7]. If

a busy web server�s total request rate increases above the total link capacity or the total

server capacity (maximum simultaneous/concurrent users), the number of rejected requests

increase dramatically and the server o¤ers poor performance and long response time, where

the response time of a client is de�ned as the duration from when the client makes a request

until the entire �le is received by the client.

No one likes to wait and the clients will get frustrated if they cannot complete their

requests within a certain time. The slow response times and di¢ cult navigation are the

most common complaints of Internet users [5]. Research shows the need for fast response

time. The response time should be around 8 seconds as the limit of people�s ability to keep

their attention focus while waiting [6]. The question arises, what can we do to improve the

response time?

1

1.1 Statement of the problem

This study considers how we might improve the response time for clients accessing a busy

web server by applying the scheduling policies on web servers. A web server cannot handle

numerous requests at the same time, and will typically use a bu¤er or queue to store

incoming requests awaiting service. Requests in queue are typically stored in order of arrival.

The web server will take the request at the front of the queue, and serve it �rst. This is an

example of �rst-in-�rst-out (FIFO) scheduling. A more common scheduling policy in web

servers is processor sharing (PS) scheduling. In PS each of n competing requests (processes)

gets 1=n of the CPU time, and is given an equal share of the bottleneck link. This approach

is fair, and prevents long �ows from monopolizing server resources. It has been known from

the queuing theory that Shortest Remaining Processing Time (SRPT) scheduling policy

is an optimal algorithm for minimizing mean response time [18]. However, the optimal

e¢ ciency of SRPT depends on knowing the response time of the requests in advance. M.

Harchol-Balter et al.[21], [22] used the job size to refer to processing time (response time) of

the job to implement SRPT for web servers to improve user-preceived performance. In the

Internet environment, depending only on the �le size for estimating the response time is not

enough since it does not take into consideration the Internet parameters like Round Trip

Time (RTT), bandwidth diversity, and loss rate. To include these parameters in estimating

the user response time we proposed a new scheduling policy in web server which is called

Shortest Remaining Response Time (SRRT) to improve the mean response time of clients.

1.2 Problems with existing algorithms

Recently, size-based scheduling policies on web servers [8], [9], [11], [21] assumed that the

response time is only the size of the �le being served, which is well-known to the server.

And since the small �les were common in the web, the performance improvements were

possible by improving the server�s services for small �les [14]. SRPT algorithm reduces the

mean response time without hardly penalizing the large requests [21]. However, is �le size

alone a good estimator to clients�response time from the web servers?

Web servers are used mainly in the Internet to service requests from a large number of

2

heterogeneous users. The diversity of the user characteristics in their connectivity condi-

tions, presents high variability in bandwidth, round-trip times and packet loss. Therefore,

the size-based scheduling policies for web servers should take into account the Wide Area

Network conditions (WAN) in their implementation in addition to �le size as a main crite-

rion for the web server scheduling.

Other work on web server scheduling [16], [25] show that in the Internet environment

we cannot ignore the e¤ect of the WAN parameters like network path delay and packet

loss in the scheduling algorithms on web servers. Dong Lu et al. [25], have shown that the

correlation between the �le size and the response time are quite low, and shows that the

performance of size-based scheduling on web servers degrade dramatically due to weak cor-

relation between the �le size and the response time. In Fastest Connection First (FCF) [16]

giving the priority to HTTP request based on the request size and on the throughput of the

user�s connection improves the mean response time. FCF work is done only by simulation.

Mayank Rawat et al. [10] proposed the SWIFT scheduling algorithm for web servers. They

prioritize the request based on both the size of the requested �le and the round trip time

(RTT). The SWIFT algorithm shows a better improvement over the SRPT scheduling al-

gorithm. In the SWIFT algorithm implementation, they assumed that the HTTP requests

are embedded with the RTT in their trace driven experiment. This assumption is not a

realistic scenario for measuring the RTT "on-the-�y". Our approach, Shortest Remaining

Response Time First (SRRT), uses getsockopt() Linux system call to get the RTT value

and the TCP window size on �y for each connection. The RTT and the TCP window size

determine the maximum throughput of the TCP connection. Thus, the RTT and the TCP

window size were considered as new parameters for estimating the response time in addition

to the size of the requested �le.

1.3 Response time components

The client-server interaction over the Internet is shown in Figure 1. According to this

model, the total response time can be de�ned as the time from the client submits a request

until the time he receives the last byte of the requested �le which can be classi�ed by the

3

following delay categories:

Figure 1: Client-server interaction over the Internet

1. Queuing delay : The time a packet (request/replay) waits in a queue at the client/server

until it can be transmitted. This delay depends on the load on the communication

link. Also, queuing delay is proportional to the queue (bu¤er) size. The average wait-

ing time in the queue increases as the number of waiting packets to be transmitted in

the queue increases. However, this is preferable to a shorter queue capacities which

would lead to drop packets, which is a cause of much longer overall transmission times

due to retransmission.

2. Transmit delay : The delay between the transmission of �rst bit of the packet (re-

quest/replay) to the transmission of the last bit. This delay depends on the capacity

of the communication link.

Transmit Delay =
Transfer Size
Link Capacity

=
S

C

We shall consider the transmission delay of a request to be negligible, given the small

size of request packets.

3. Server processing delay : The time from receiving a request/packet at the server to the

point of putting the replay into the server transmit queue. This time delay depends

on the CPU speed and CPU load in the server.

4. Round Trip Time Delay (RTT): The total time for the request to propagate through

the network to the server, and the replay to propagate back to the client. This delay

4

depends on the network speed, the distance between the transmitter and the receiver,

and the congestion on the network.

So the total response time (RT) is:

RT � RTT +
S
C
+ Queue Delays

The mean response time (RT) is the main performance metric in this study which is

de�ned as the average response time for all n requests:

RT =

nP
r=1
RT (r)

n
; r is the request.

1.4 Our approach

We propose an e¤ective method for estimating the response time for a web client using

the TCP implementation at the server side only, without introducing extra tra¢ c into the

network or even storing historical data on the server. The proposed method �nds the

client response time in each visit to a server, and then schedules the requests based on the

Shortest Remaining Response Time First (SRRT). In this method we try to have the exact

knowledge of the response time by taking into consideration the WAN conditions such as

the path delay and bandwidth, the tra¢ c on the network and the congestion, the load of

the server, and the size of the �le.

In our approach we use the Linux getsockopt() system call to get the RTT and the

congestion window (cwnd) from the TCP implementation at the server side. These two

values are used to estimate the maximum TCP transmission rate for the connection between

the client and the server. The response time for each visit to a server can be approximated by

the RTT plus the size of the requested �le divided by the estimated TCP transmission rate.

where the TCP transmission rate is de�ned by the congestion window size (cwnd) divided

by the RTT value. Requests are then prioritized based on the shortest remaining response

time request �rst. See section 3.4.5 for the complete description of SRRT algorithm.

For our implementation, we use a web workload generator to generate requests with

certain distribution and focus only on static requests which form a major percentage of the

web tra¢ c [15], [21]. Our experiment uses the Linux operating system and Apache web

5

server . The experiment setup is detailed in chapter 4.

We compare the SRRT with the PS and SRPT scheduling policies in web servers. We

�nd that the SRRT gives the minimum mean response time. We conclude that the client

response time is a¤ected by the Internet tra¢ c. So any scheduling policy in web servers

should take into consideration the Internet conditions to prioritize the requests.

1.5 Organization of the thesis

The thesis is organized into six chapters. Chapter 2 discusses relevant previous work in web

server requests scheduling. The scheduling policy design considerations that we made and

implementation details are covered in chapter 3. Chapter 4 describes experiment setup and

con�guration details. The experiment results and analysis are given in chapter 5. Finally,

chapter 6, summarizes the research performed and discusses possible future work.

6

CHAPTER II

LITERATURE REVIEW

There have been numerous studies about assigning di¤erent priorities to connections for

trying to improve the web server performance; especially the client response time. The

work can be divided into three categories; web server request scheduling, admission control,

and service di¤erentiation.

2.1 Web server request scheduling

Request scheduling refers to how requests are stored and served by the server. Usually, the

operating system is responsible for request scheduling. It is well known from scheduling

theory literature [17], [18], [20] that if the task sizes are known, the Shortest Remaining

Processing Time �rst (SRPT) scheduling is optimal for reducing the queuing time, therefore

reducing the mean response time. Here, we will focus on scheduling algorithms that are

based on SRPT and how one can apply them to the web servers.

There are many techniques based on the SRPT algorithm. These techniques for web

server scheduling can be divided into three categories: web server scheduling implementa-

tion, web server scheduling simulation studies, and web server scheduling analytical/theoretical

studies.

2.1.1 Web sever scheduling implementation:

The work that implements scheduling for web servers based on the SRPT was done on both

the application level, and at the kernel level to prioritize HTTP requests at the web server.

M. Crovella et al. [8] experimented with the SRPT connection scheduling at the application

level. They get an improvement in the mean response times, but at the cost of drop in the

throughput by a factor of almost 2. The problem was that they did all the modi�cations

to the Apache web server at the application level. As a result, there is no adequate control

over the order in which the operating system services the requests.

7

M. Harchol-Balter et al. [21] implemented SRPT connection scheduling at the kernel

level. They get much larger performance improvements than in [8] and the drop in the

throughput was eliminated. B. Schroeder and M. Harchol-Balter [22] show an additional

bene�t from performing SRPT scheduling for static content web requests. They show that

SRPT scheduling can be used to alleviate the response time e¤ects of transient overload

conditions without excessively penalizing large requests.

SWIFT: Scheduling in Web Servers for Fast Response time algorithm [10] extend the

work in [21] based on SRPT, but taking into account in addition the size of the �le, the

round-tip-time (RTT) to represent the distance between the client and the server. With this

technique they obtained a response time improvement for large-sized �les by 2:5% to 10%

additional to the SRPT technique that takes into account only the size of the �le. In the

SWIFT algorithm implementation, they assumed that the HTTP requests are embedded

with the RTT in their trace driven experiment. This assumption is not a realistic scenario

for measuring the RTT "on-the-�y".

2.1.2 Web sever scheduling simulation studies:

In addition to implementation studies, there are simulation studies of scheduling algorithms

for web servers [16], [23] M. Gong and C. Williamson [23] identify two di¤erent types of

unfairness: endogenous unfairness which is caused by an inherent property of a job, such as

its size. This aspect of unfairness is invariant. And exogenous unfairness caused by external

conditions, such as the number of other jobs in the system, their sizes, and their arrival

times. They then continue to evaluate SRPT and other policies with respect to these types

of unfairness.

C. Murta and T. Corlassoli [16] introduce and simulate an extension to SRPT scheduling

called FCF (Fastest Connection First) that takes into consideration the wide area network

(WAN) conditions, such as variability in the bandwidth, round trip time, and packet loss

characteristics, in addition to request size when making scheduling decisions. This schedul-

ing policy gives higher priority to HTTP requests for smaller �les issued through faster

connection. This work is done only by simulation without providing a clear idea on how to

8

implement it in a real web servers.

E. Friedman et al. [24] propose a new protocol called FSP (Fair Sojourn Protocol) for

use in web servers. FSP orders the jobs according to the processor sharing (PS) policy

and then gives full resources to the job with the earliest PS completion time. The FSP is a

modi�ed version of SRPT and it has been proven through analysis and simulation that FSP

is always more e¢ cient and fair than PS given any arrival sequence and distribution. Their

simulation results show that FSP performs better than SRPT for large requests, while the

SRPT is better than FSP for small requests.

Finally, D. Lu et al. [25] studied the central assumption that is usually made in imple-

menting size-based policies (SRPT, FSP) in a web server . The assumption is the response

time of a request is strongly correlated with the size of the �le it serves. They found the

correlation is weak on a typical web server and the �le size may not be a good estimator of

overall response time.

2.1.3 Web sever scheduling theoretical studies:

The queuing theory is an old area of mathematics that provides the tools needed for de-

sign/analysis of scheduling algorithms in general. Here we will talk only about the web

server scheduling theoretical studies that are based on the optimality of SRPT in terms of

mean response time (sojourn time) [17], [18], [19].

Recent developments in web server scheduling had led to renewed interest in SRPT

queuing. Harchol-Balter et al. [8], [21], [22] proposed the usage of SRPT in web servers to

improve the client�s response time.

N. Bansal and M. Harchol-Balter [13] compare the SRPT policy and the PS policy ana-

lytically for an M/G/1 queue1 with job size distributions which are modeled by a Bounded

Pareto distribution. They show that with link load � = 0:92, the large jobs perform better

1From Queueing Theory, theory deals with problems which involve queuing (or waiting):
M=G=1 queue has
M(memoryless) : Poisson arrival process
G (General) : general holding time distribution
1 : single server

2� =
Average Utilization of the Link

Maximum Link Capacity

9

under the M/G/1 SRPT queue than the M/G/1 PS queue. And then they prove that

for load � = 0:5, the SRPT improves performance over PS with respect to mean response

time for every job, including the very largest job, and for every job size distribution. Also,

Harchol-Balter et al. show some theoretical results. For the largest jobs, the slowdown

(response time divided by job size) under SRPT is only slightly worse than under PS [28].

In recent work by Bansal [26] and Bansal and Gamarnik [27], interesting results on the

mean response (sojourn) time in heavy tra¢ c were obtained that show that SRPT performs

signi�cantly better than FIFO if the system is under heavy tra¢ c.

2.2 Admission control and service di¤erentiation

Scheduling techniques can be used to improve response time to higher priority requests.

However, in a server overload case, other techniques may apply. Admission control is used

to reduce the server workload, by limiting the number of accepted requests, so that the

server does not overload. On the other hand, service di¤erentiation is based on classifying

di¤erent types of clients and giving them di¤erent levels of quality of service (QoS), and

thus, the resources are allocated to higher priority requests. Usually, both these techniques

are combined together.

In [29], the proposed technique concentrates on admission control for Secure Socket

Layer (SSL) sessions. This technique depends on the observation that new SSL sessions

require a lot of computation, due to the negotiation of full SSL handshakes. And thus, the

resumed SSL sessions take higher priority than new SSL sessions. Chen et al. [30] proposed

an admission control technique to limit the number of accepted requests based on estimated

response time. This approach is only done by simulation.

Other work deals with managing service performance under overloaded dynamic con-

tent servers which is based on staged event-driven architecture (SEDA) [31] to break up

a complex service in multiple stages connected by queues. Admission control can be per-

formed in these queues based on monitoring the performance of the service (response time)

in the stage. In [32], the authors proposed a new method for admission control and re-

quest scheduling for e-commerce web sites. The method considers the execution costs of

10

requests online, distinguishing between di¤erent request types to make overload protection

mechanism.

In [33] the clients were categorized based on connectivity quality between client and

server. Better-connected clients receive higher quality response. On the other hand, users

with poor connectivity receive less quality. For example, if connectivity quality is bad for

one client, the server selects a lower quality image to send to the client, and it can even

select not to send any image, but only text to improve the response time.

Our solution is based on a SRPT scheduling that takes into consideration the WAN

parameters in addition to the size of the requested �le and also takes into account the

interaction of the TCP communication in the implementation to improve the mean response

time as a main metric without sacri�cing in the throughput.

11

CHAPTER III

IMPLEMENTATION OF SRRT

In this chapter we describe what we need to build SRRT and SRPT web servers based on

Apache running on Linux. Basically two things are needed. First, we need to set up several

priority queues at the Ethernet interface. Second, we need to modify the Apache source

code to assign priorities to the corresponding requests. In section 3.1 we describe how

tra¢ c control queuing discipline achieves priority queuing in the Linux operating system.

In section 3.2 we describe how Apache web server code assigns and updates priorities to

the requested static �les. In section 3.3 we give an overview of TCP congestion control and

how SRRT implementation is informed by certain parameters of the TCP protocol.

3.1 Di¤erentiated services and tra¢ c control in Linux

Linux has Quality of Service (QoS) mechanism called �Tra¢ c Control�1. Tra¢ c control

provides a set of queuing systems and priority schemes between the IP layer and the network

device to condition network tra¢ c. The tra¢ c control tool (tc) enables the user to control

these queues and the queuing mechanisms of packets transmitted and received over the

networked device. Therefore, the typical uses of tra¢ c control are to raise the priority of

some kind of tra¢ c higher than others, or to limit the rate at which tra¢ c is sent, or to

block undesirable tra¢ c.

There are three main elements of tra¢ c control: classi�er, scheduler, and queues. Pack-

ets are classi�ed by looking at the packets content or at other information related to the

packets and then classifying them into di¤erent classes. Packets are then placed into dis-

tinct queues, and eventually scheduled for transmission. The class of a packet determines in

1The support for di¤erentiated service (Di¤Serv) is integrated into 2.4 Linux kernels and above by default.
If the Di¤Serv is not supported, it can be added by enabling �QoS and/or fair queuing�kernel con�guration
options in the section �Networking Options�where con�gering the kernel source. More clear explanation of
how to con�gure Linux to implement the Di¤Serv is given in [37].

12

which queue the packet goes and how it is scheduled [38]. Figure 2 illustrates this process.

Figure 2: Tra¢ c contol elements [38]

The queuing disciplines (qdisc) form a basic block for supporting QoS in Linux. There

are many queuing disciplines that are supported in Linux which includes: Packet First-In,

First-Out (p�fo_fast), Priority (prio), Token Bucket Flow (tbf), Stochastic Fair Queuing

(sfq), Class Based Queue (cbq), and others. All types of queuing disciplines are explained

in detail in [40]. Here we are interested in the p�fo_fast qdisc which is the default queuing

discipline in Linux. Also, we are interested in prio qdisc which is needed to implement our

algorithm.

3.1.1 Default Linux qdisc

The default qdisc under Linux is the p�fo_fast qdisc. This qdisc is slightly more complex

that FIFO (First-In, First-Out) as, it provides some prioritization. This qdisc has three

di¤erent queues (bands). Within each band, FIFO rules apply. The highest priority tra¢ c

is placed into band 0; as long as there are packets waiting in band 0, band 1 will not be

processed. The same goes for band 1 and band 2. The p�fo_fast qdisc is shown in Figure 3.

The data being passed from user space is stored in socket bu¤ers corresponding to each

connection. When data streaming passes from the socket bu¤ers to TCP layer and IP

layer, the TCP headers and the IP headers are added to form packets. The packet �ow

corresponding to each socket is kept separate from other �ows [21]. After that, packets are

sent from IP layer to p�fo_fast queuing discipline.

p�fo_fast qdisc is a classless queuing discipline, so it cannot be con�gured. The packet

priorities are determined by the kernel according to the so called Type of Service (TOS) �ag

13

Figure 3: Defualt Linux qdisc(p�fo_fast)

and priority map (priomap) of packets2. However, all packets using the default TOS value

(0x00) are queued to the same band. So the three bands appear as a single FIFO queue in

which all streams feed in a Round-robin service (Processor Sharing (PS)): Fairness per �ow,

all requests from processes or threads are given an equal share of capacity. Packets leaving

this queue drain in a network device (NIC) queue and then out to the physical medium

(network link).

Now, to see which queuing discipline is in e¤ect, the tra¢ c control3 (tc) command in

the user space can be used as follows:

tc qdisc

The above command will generate the following:

2For an exact description of how packet priorities are determined, see [40] section 9.2.1.
3To check the current working version of iproute2 package is available in Linux:, issue the following

command:
tc -V
tcutility, iproute 2 -ss040831

14

qdisc p�fo_fast 0: dev eth0 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1

As shown above, the default qdisc on eth0 device is p�fo_fast with 3 priority bands and

a FIFO ordering in each band. The priomap determines how packet priorities, as assigned

by the kernel, map to bands. Mapping occurs based on the TOS value of the IP header.

The TOS �eld is shown in Figure 4(a) and the meaning of TOS bits in Figure 4(b). The

TOS bits can be combined to form 16 values (24) for the TOS �eld which are given in the

Figure 4(c). Using the default priomap, packets with a TOS value of 0x10, 0x12, 0x14 or

0x16 will be sent to band 0. Packets with a TOS value of 0x0, 0x4, 0x6, 0x18, 0x1a, 0x1c,

0x1e to band 1 and packets with a TOS value of 0x2, 0x8, 0xa, 0xc and 0xe to band 2.

See [40] for further details.

Figure 4: priomap as assigned by the kernel [40]

15

3.1.2 prio qdisc to implement SRRT

To implement our scheduling algorithm, we need several priority queues. And this can

be achieved by prio qdisc. The prio qdisc has similar behavior like p�fo_fast but can be

con�gured. The prio qdisc works on a very simple principle. When it is ready to dequeue a

packet, the �rst band (queue) is checked for a packet. If there is a packet, it gets dequeued.

If there is no packet, then the next band is checked, until the queuing mechanism has no

more classes to check. Figure 5 shows the prio queuing discipline to implement SRRT and

SRPT.

Figure 5: prio qdisc to implement SRRT and SRPT

Three methods are available for prio qdisc to determine in which band a packet will be

enqueued:

� From user space: A process with su¢ cient privileges can encode the destination class

directly with socket option (SO_PRIORITY). We will use this method in the SRRT

implementation by giving the Apache code the responsibility to assign the priorities

16

to the corresponding connection.

� With the priomap: Based on the packet priority, which in turn is derived from the

Type of Service assigned to the packet.

� With a tc �lter: A tc �lter attached to the root qdisc can point tra¢ c directly to a

class.

3.1.2.1 Setup the tra¢ c control tree

As seen above, it is needed to create a tra¢ c control tree as shown in Figure 6 to enable

priority queue with seven leaves.

Figure 6: Tra¢ c control tree

The tc control command can be used to setup the above tra¢ c control tree to create

several priority queuing discipline as shown in the following script.

#!/bin/bash

tc qdisc add dev eth0 root handle 1: prio bands 7 priomap 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15

tc qdisc add dev eth0 parent 1:1 handle 10: p�fo

tc qdisc add dev eth0 parent 1:2 handle 20: p�fo

tc qdisc add dev eth0 parent 1:3 handle 30: p�fo

tc qdisc add dev eth0 parent 1:4 handle 40: p�fo

tc qdisc add dev eth0 parent 1:5 handle 50: p�fo

tc qdisc add dev eth0 parent 1:6 handle 60: p�fo

tc qdisc add dev eth0 parent 1:7 handle 70: p�fo

Here we have 16 priority bands (queues) and we want to use only the bands that range

in number from 0 to 6, where band 0 has highest priority and band 6 has lowest priority.

17

The prio qdisc works as follow: the priority queues feed in a prioritized fashion into the

network device queue. When the prio qdisc is ready to dequeue a packet, band 0 is checked

for a packet. If there is a packet, it gets dequeued. If there is no packet, then band 1 is

checked, and so on until reaching band 6 (last band in our example).

Con�guration check

Now, the con�guration has been completed. To print the current parameter settings

statistics, issue the show option of the tc command. The -s option means statistics, and -d

option means detail.

Let us examine what we have created.

tc -s -d qdisc show dev eth0

qdisc prio 1: bands 16 priomap 0 1 2 3 4 5 6 0 1 1 1 1 1 1 1 1

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 10: parent 1:1 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 20: parent 1:2 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 30: parent 1:3 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 40: parent 1:4 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 50: parent 1:5 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 60: parent 1:6 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

qdisc p�fo 70: parent 1:7 limit 1000p

Sent 0 bytes 0 pkts (dropped 0, overlimits 0 requeues 0)

To return to the default Linux qdisc, remove the root qdisc by issuing the following

command:

#tc qdisc del dev eth0 root

18

3.2 Modi�cations to Apache web server to implement SRRT

After enabling the priority queuing in Linux by using tc command, we need to assign priori-

ties to the packets and put them in the designated queue. The task of prioritizing sockets is

given to the Apache web server code. We made changes to the Apache HTTP Server 2.2.4

code to prioritize connections. The modi�cations are fairly isolated to two speci�c �les:

httpd-2.2.4/server/protocol.c and httpd-2.2.4/server/core.c. The di¤s for these �les can

be seen in Appendix B. Apache uses the setsockopt(. . . ,SOL_SOCKET, SO_PRIORITY,

...)4 function to set the priority to the sockets. Apache sends the requested �le, and after

every IOBUFSIZE5(8KB), the remaining size of the �le decreases. A check is made whether

the priority level of the remaining size has fallen below the threshold for the current priority

class. If it is so, Apache updates the socket priority with another call to setsockopt().

The installation of the SRRT- and the SRPT-modi�ed Apache servers are exactly the

same as the installation of standard Apache. The only thing that might need to change when

experimenting with SRRT and SRPT servers are the priority array values to determine the

priority class of the socket. The priority array de�ned in httpd-2.2.4/server/protocol.c in

the following lines.

For SRPT:

unsigned int prios[7] = { 0, 1000, 2000, 5000, 15000, 80000, 1000000000 };

These values represent the �le sizes classes. Files with size less than 1000Byte go to

band 0 and �les with size between 1000Byte-2000Byte go to band 1 and so on. These values

(cuto¤s) depend on the �le size distribution of the �les served by the Apache web server,

which are chosen based on the rule of thumb given in [21] to prevent the starvation in heavy

4For more details about sockets options (getsockopt and setsockopt) see [61].
5 IOBUFSIZE: the size of the server�s internal read-write bu¤ers

19

tailed distributions6 of �le sizes. By denoting the cuto¤s by x1 < x2 < ::: < xn; then the

lowest cutto¤ x1 should be such that about 50% of the requests have size smaller than x1.

The highest cutto¤ xn should be low enough such that 0:5%� 1% of the requests have size

> xn to prevent starvation of large requests. A logarithmic spacing can be taken for middle

cuto¤s.

For SRRT:

unsigned int prios[7] = { 0, 100, 500, 1000, 20000, 80000, 1000000 };

These values are taken depending on the response time in milliseconds. The upper

value is set to 1000000 msec to prevent starvation of long response. The 80000 corresponds

to estimated response time for large �le, 2MB, through bad network conditions (RTT =

350ms, cwnd = 3). Assuming that the Maximum Segment Size MSS = 1460Bytes, the

approximated response time is

Response_time = RTT
�

File

cwnd�MSS + 1
�
7

Response_time = 350(
1� 1024� 1024

3� 1460 + 1) = 84140:0ms

The other values are taken based on the experiment trials. After experimenting with

di¤erent values, we found these cuto¤s gave us good results.

There are two problems caused by giving the web server code the responsibility for

prioritizing the connections. The �rst one is the overhead of the system calls to assign

priorities, and the second is the need to modify the web server code which is limited to a

few lines in a handful �les as seen in Appendix B. The �rst problem is alleviated by limiting

the number of setsockopt() calls that have to be made. Typically only one call is made

per connection. In the worst case, the number of setsockopt() calls equal the number of

6The heavy-tailed distributions are probability distributions with in�nite variance. The distribution of a
random variable X is said to have a heavy tail if: PrfX > xg~x��; 0 < � < 2:

7See section 3.3 for more detials

20

priority classes (6 in our experiments) per connection. The implementation of SRRT using

prio qdisc limits us to 16 priority bands. However, we used only 6 priority bands in our

experiment.

TCP SYN-ACKs gets by default into the highest priority band �band 0�. Here, we

will take into consideration the recommendation given by [21]. Because the start up of the

connection is an essential part of the total response delay, especially for small �les before

the size of the �le is known, no sockets are assigned to priority band 0, but are assigned

to other bands of lower priority, to prevent packets sent during the connection start up

waiting in a long queue. SYN packets are 40 bytes (320bits), so the SYN-ACKs constitute

a negligible fraction of the total load. Thus assigning them to higher priority does not a¤ect

the performance.

3.3 Using TCP protocol information to implement SRRT

To address all the client-server interaction on the Internet such as variability in bandwidth,

round trip time and packet loss in addition to �le size, we propose a simple and low-overhead

estimator for response time that make scheduling perform better. We propose the SRRT

algorithm that takes into consideration the WAN parameters: delay, loss rate and TCP

throughput by bene�ting from TCP implementation.

3.3.1 Data transmission over TCP

To communicate over a TCP protocol [49], [50], [51], [52], [53], [54] the receiver informs the

sender about the available bu¤er space at the receiver using the TCP header �eld �window�.

The window size is the amount of data a sender can send before it gets an acknowledgment

(ACK) back from the receiver. No more than this amount of data should be transmitted

in the network by this TCP connection. Also the sender must bu¤er the sent data until it

21

has been acknowledged by the receiver, so that the data can be retransmitted if needed to

recover from an error. For each ACK at the sender, sent data is dropped from the window

and a new segment �lls the window.

The main reason for using the sender window is congestion control. Due to TCP�s

congestion control mechanism, TCP widow sizes can be bound to the maximum theoretical

throughput rate (
cwnd�MSS

RTT
bps) despite the actual bandwidth capacity of the network

path. Too small a TCP window size can degrade the network performance (rate <<

capacity), and too large window size causes the rate to be greater than the bandwidth

capacity which is leads to congestion in the network.

3.3.2 TCP congestion control

TCP congestion control and window size adjustment are essentially based on the TCP Slow

Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery algorithms [53].

3.3.2.1 Slow start

TCP operates over a heterogeneous Internet. TCP has no advance knowledge of network

conditions, thus it has to adapt its behavior according to network current state. To avoid

that a starting TCP connection inject data at a rate higher than the network can handle,

a Slow Start mechanism was introduced into TCP. The Slow Start e¤ectively probes to

perceive the available network bandwidth. Slow Start starts slowly, and then increasing its

window size as TCP gains more con�dence in the network�s ability to handle tra¢ c.

Slow Start implementation uses two values: congestion window (cwnd) and Slow Start

Threshold (ssthresh). The cwnd is a transmit window limit at the sender end. ssthresh is

the threshold for determining the point at which TCP exits slow start. TCP connections

start with ssthresh set to 64KB. Initially, the cwnd value is set to maximum segment size

22

(MSS)8. Every time an ACK arrives, the cwnd window is incremented by one MSS. The

sender starts by transmitting one segment and waiting for its ACK. When that ACK is

received, the cwnd is incremented from one to two, and two segments can be sent. When

each of those two segments is acknowledged, the cwnd is increased to four. Thus, the cwnd is

e¤ectively doubled per RTT. If cwnd increases beyond ssthresh, the TCP congestion control

mode is changed from Slow Start to Congestion Avoidance. Exiting slow start signi�es that

the TCP connection has reached an equilibrium state where the cwnd closely matches the

networks capacity.

3.3.2.2 Congestion avoidance

Once cwnd is greater that ssthresh, TCP enters the congestion avoidance mode. From this

point on, TCP cwnd will be much more conservative. The cwnd will grow linearly and not

exponentially. In this mode, the primary objective is to maintain high throughput without

causing congestion. The cwnd continues to use a linear growth until congestion is detected.

If TCP detects packet loss, it assumes that congestion has been detected over the Internet.

As a corrective action, TCP reduces its data �ow rate by reducing cwnd to go back to slow

start.

3.3.2.3 Fast retransmit and fast recovery

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when

segment loss is detected. Fast Retransmit and Fast Recovery have been designed to speed

up the recovery of the connection, without compromising its congestion avoidance charac-

teristics. Fast Retransmit: TCP receives duplicate acks and it decides to retransmit the

segment, without waiting for the segment timer to expire. This speeds up recovery of the

8MSS refers to the size of the biggest chunk of data that can be sent in a single TCP segment. Typical
MSS values: 1460 bytes, 536 bytes (default), and 512 bytes.

23

lost segment. Fast Recovery: Once the lost segment has been transmitted, TCP tries to

maintain the current data �ow by not going back to slow start. TCP also adjusts the

window for all segments that have been bu¤ered by the receiver.

3.3.3 TCP time-out and round trip time

The TCP congestion control mechanism involves Time-outs that cause retransmissions. A

timer is started after a segment is sent, and retransmit will occur if the timer times out before

data in the segment has been acknowledged. Therefore, it is important that hosts have an

accurate Time-out method. The Time-outs are set as a function of RTT. To compute the

RTT, TCP sets the timestamp ts with the sent packet and when its ACK arrives, record

timestamp ta.

SampleRTT = ta � ts

To compute Time-out, there are two algorithms:

Algorithm 1 Karn/Partridge Algorithm: An adaptive retransmission algorithm [59]:

EstimatedRTT = ��Old_EstimatedRTT + (1� �)�New_SampleRTT

TimeOut = � � EstimatedRTT

In the event of a retransmission due to a time-out,

New_TimeOut = � TimeOut

where �, �, and values usually 0.9, 2, and 2 respectively.

Algorithm 2 Jaconson/Karels Algorithm [60]:

This algorithm takes into account the mean and the variance of RTT.

Difference = New_SampleRTT �Old_EstimatedRTT

EstimatedRTT = Old_EstimatedRTT + ��Di¤erence

Deviation = Old_Deviation+ �(jDi¤erencej �Old_Deviation)

24

In the event of a retransmission due to a time-out,

TimeOut = EstimatedRTT+ � Deviation

where �; � and � are recommended to be
1

23
,
1

22
and 4 respectively

New_TimeOut = � TimeOut is still applied.

3.3.4 Approximating the remaining response time for the TCP connection

After processing a HTTP request, the server code uses the TCP_INFO socket option to

get useful information that will be used to estimate the remaining response time of the

request on the server side. By using getsockopt(...,IPPROTO_TCP, TCP_INFO,...) the

server can know the RTT and TCP throughput for each connection. The requested �le size

is already known by the server after processing the request. Hence the remaining response

time (RRT) can be approximated as follows:

RRT (sec) � RTT + RFS(byte)

R(bytes=sec)

where RFS is remaining length of the requested �le and R is the approximated TCP

transfer rate.

The TCP window size is the most important parameter for achieving maximum transfer

rate (throughput) across the network. Due to TCP�s congestion control mechanism, the

TCP protocol limits the use of physical resources. TCP cwnd size can limit the maximum

transfer rate regardless of the actual physical bandwidth of the network path. To achieve

the maximum throughput, the TCP window should be greater than the bandwidth-delay

product.

WindowSize > Bandwidth(bytes=sec)�RoundTripT ime(sec)

cwnd > BW ((bytes=sec)�RTT (sec)

BW (bytes=sec) 6 cwnd(byte)

RTT (sec)

Roughly, the current maximum transfer rate (R) for a connection can be approximated

25

by:

R(bytes=sec) =
cwnd(byte)

RTT (sec)

3.3.5 The �nal SRRT algorithm

After processing a request we know its �le size, the RTT and an estimate of the TCP

throughput. Collecting this information is simple and requires little work per request. The

SRRT can be summarized in the following steps:

1. During the connection setup phase, a request respected to socket with the highest

priority (priority 0)

2. Get the following quantities for the TCP by using getsockopt(..., IPPROTO_TCP,

TCP_INFO,...) function:

(a) Round trip time (RTT)

(b) Congestion Window (cwnd)

3. Use the congestion window and the RTT values to estimate the service rate (R) for

each connection:

R(bytes=sec) =
cwnd(byte)

RTT (sec)

4. Determine the Remaining File size (RFS)

5. For each connection, estimate the request�s Remaining Response Time (RRT)

RRT (sec) = RTT +
RFS(byte)

R(bytes=sec)

= RTT (sec) +
RFS(byte)

cwnd(byte)
�RTT (sec)

RRT (sec) = RTT (sec)

�
1 +

RFS(byte)

cwnd(byte)

�

26

6. Based on RRT , the priority of the socket corresponding to the each request is deter-

mined. The priority of the sockets are updated dynamically after every IOBUFSIZE

(8192bytes), the size of the server�s internal read-write bu¤ers, of the sent �le, by

repeating steps 2 to 5 above.

As seen above, our algorithm for the estimating the remaining response time depends

on three variables; remaining length of the sent �le, current Round Trip Time, and the

current TCP congestion window size. And thus, we consider almost all aspects that a¤ect

data transfer over the Internet since the RTT and the congestion window size change dy-

namically according to network conditions. The estimated RRT is in�uenced by network

conditions, and we obtain updated estimates for this RRT with each iteration of steps 2

to 5 in the algorithm above. The highest priority is given to the connection that has the

best performance estimate: the connection that needs to transfer small �le through an un-

congested path, which has smaller RTT and large Congestion Window. As a consequence,

by giving priority to the fast connection which will �nish faster, we release resources at the

server to enable other requests waiting in the queue to use them.

In addition to the above algorithm, we tried out with another algorithm which is based

on the total estimated response time (TERT) and not only on the estimated remaining

response time (RRT). In this algorithm, the priorities are given to the requests based on

the shortest total estimated response time (STERT). STERT gives better results than SRPT

but worse than SRRT. Accordingly, in all coming discussion we will talk only about SRRT.

Appendix A contains the details for STERT with some results.

27

CHAPTER IV

EXPERIMENT SETUP

This chapter discusses how to set up our experiment and how to go about benchmarking

web servers running on Linux.

4.1 Benchmarking web server

The aim of our experiment is to minimize the mean response time from the server to clients

without a¤ecting other performance metrics such as the number of requests per second the

server is able to sustain, the number of bytes transferred per second (data throughput) and

the number of simultaneous connections the web server can handle without error.

A typical network layout to conduct web server benchmarking requires the following

components:

� A server running the web server software under test

� A number of clients running load generating software

� A network connecting the clients to the server

Figure 7 shows a typical network layout for web server benchmarking. A number of

clients are connected via a switch to the server under test.

4.2 The bottleneck

For benchmark results to be useful, it is critical to determine where of the performance

bottleneck in the system is. The bottleneck could be on:

� The client machines

28

Figure 7: Network layout for Web server benchmarking

� The network bandwidth

� The server

4.2.1 Network connection

On a web server servicing primarily static �les, network bandwidth is the most likely source

of a performance bottleneck [21], [43]. Even modest web servers supply enough data to

completely saturate a T3 connection (45Mbps) or a 100Mbps Fast Ethernet connection [46].

As the network is the bottleneck resource, our scheduling policy for static contents is applied

on the access link out of the web server. Thus, the system load can be de�ned as the link

utilization.

However, we represent the system load by the number of concurrent users (User Equiv-

alents, UEs) generated by the workload generator. As the number of UEs increases the

average use of the link bandwidth increase. We found, about 1000 UEs can saturate the

100Mbps link. So we can consider the load = 1 at 1000 UEs for 100Mbps link.

29

4.2.2 Client machines

It is critical to prevent client machines from becoming the bottleneck. To eliminate this

possibility, several clients are used. To determine whether or not the clients are the bot-

tleneck, the same total number of requests are run twice over di¤erent numbers of clients.

If the results change, then the client(s) is the bottleneck, and the number of clients should

be increased. We also use six client machines to represent di¤erent networks with di¤erent

RTTs and loss rates to emulate clients from heterogeneous WANs. In our experiments, a

client machine CPU utilization did not exceed 7% and memory usage was less than 30%;

so clients were not the bottleneck.

4.2.3 The server

A single server can support several thousand concurrent users depending on system spec-

i�cations. In May 2005, a national mirror server for Ireland, ftp.heanet.ie (single Apache

web server), was sustaining more that 20000 simultaneous HTTP downloads and had sat-

urated a gigabit of connectivity [47]. ftp.heanet.ie was running with Debian GNU/Linux

3.0.The hardware was a 667 MHz CPU, 1.5GB of memory, 30 GB of storage. Therefore,

the assumption here the server is not the bottleneck.

4.3 Experiment setup

Our experimental setup consists of seven machines connected by 10Mbps switch in the �rst

experiment and by 100Mbps Fast Ethernet connection in the second experiment. Each

machine has an Intel Pentium 4 CPU 3.20 GHz, 504 MB of RAM. We used the Linux 2.6.18

operating system. One of the machines (the server) runs Apache 2.2.4. The other machines

act as web clients. The client machines generate loads using the Scalable URL Request

Generator (SURGE) [34]. On each client machine, Network Emulator (netem) is used to

30

emulate the properties of a Wide Area Network (WAN).

Client 1

Client 3

Client 2

Client n

Apache
Web Server

Switch

SURGE
netem

SURGE
netem

SURGE
netem

SURGE
netem

Figure 8: Experiment setup

4.4 Workload tra¢ c generators

Workload generators are programs that run on client machines to emulate the web client

behavior by constructing HTTP requests and sending them to the server. The main task

of a workload tra¢ c generator is to help understand the performance of web servers. A

workload generator can typically change the number and the distribution of requests that

it generates (load) and measure how the server responds to the load variations.

4.4.1 Performance metrics

There are many performance metrics to measure such as:

1. Mean response time: let a testing client send requests at a certain rate and then

measure the average time needed to receive a response.

2. Throughput: the amount of data a server can generate per second.

3. Latency for Reading a disk �le: the time needed for reading a �le from the server.

31

4. Other qualities: fairness and robustness.

The metric that has received the most interest in web server scheduling policies is mean

response time, [10], [16], [21], [22], [25], because user perceived performance is a function of

the response time. Therefore, mean response time is considered as the main performance

metric in our experiments.

4.4.2 Workload generators

Many workload tra¢ c generators exist for evaluating web server performance. SPECweb99 [35]

is a tool distributed by the System Performance Evaluation Cooperative (SPEC) organiza-

tion. This benchmark is probably the most commonly used and most cited tool. Unfortu-

nately, this tool costs money. Httperf [36] is another frequently used workload generator.

Httperf is an open source benchmark utility from HP labs. This tool provides a �exible fa-

cility for generating various HTTP workloads and measuring server performance. However,

it does not provide request size distribution.

Many other tools exist, including WebStone, TPC-W, WaspClient, S-Client, WAGON,

WebBench, and SURGE [34] (Scalable URL Reference GEnerator). SURGE is a well-known

workload generator which generates references based on empirically derived distributions,

server �le size distribution, request size distribution, relative �le popularity, embedded �le

references, temporal locality of reference, and idle periods ("think times") of individual

users. Thus, we use the SURGE to understand how servers respond to variation in load.

4.4.3 SURGE: Workload generator for web tra¢ c

SURGE generates representative workload for static web services. It exercises servers and

networks by generating a stream of HTTP requests that mimics the behavior of users

executing web applications. SURGE generates a high variability in the workload. The

32

SURGE tool is composed of two basic parts: one concerning the concept of user equivalents

and the other concerning a set of distributional models.

The concept of user equivalents (UEs) states that the workload generated by SURGE

should imitate the structure of the real tra¢ c generated by di¤erent users. In particular,

SURGE reproduces the web requests of these users (see Figure 9).

Figure 9: Representation of a request form [32]

Each user equivalent is de�ned as a single process in an endless loop that alternates a

time period for making requests for web �les, and lying idle. Both the web request and

idle times must show the distributional and correlation properties characteristic of real web

users. Thus each UE is an ON/OFF process where ON refers to periods during which data

is being requested and OFF to those during which nothing happens (idle times).

The distributional models express the set of probability distribution used by each UE.

SURGE generates references matching the following set of statistical properties for web

streams: Server File Sizes distribution, Request Sizes distribution, Relative �les Popularity,

Embedded �le References, Temporal Locality of reference and OFF Times or Idle periods

of individual users (See the Table 1).

1. The �File Sizes� distributional model describes the set of �les stored on the server

that must agree in distribution with empirical measurements. We have 2000 di¤erent

33

Component Model Probability Density Function Parameters

File Sizes- Body Lognormal p(x) = 1
2�
p
2�
e�(lnx��)

2=2�2 � = 9:357;� = 1:318

File Sizes- Tail Pareto p(x) = �k�x�(�+1) k = 1333K;� = 1:1

Popularity Zipf
Temporal Locality Lognormal p(x) = 1

2�
p
2�
e�(lnx��)

2=2�2 � = 1:5;� = 0:80

Request sizes Pareto p(x) = �k�x�(�+1) k = 1000;� = 1:0

Active OFF Times Weibull p(x) = bxb�1

ab e
�(x=a)b a = 1:46; b = 0:382

Inactive OFF Times Pareto p(x) = �k�x�(�+1) k = 1;� = 1:5

Embedded References Pareto p(x) = �k�x�(�+1) k = 1;� = 2:43

Table 1: Distributions used in the workload generator from [32]

�le sizes on the server.

2. The �Request Sizes�distributional model describes the collection of �les sizes trans-

ferred over the network according to empirical size measurements. In general, this

distribution is di¤erent from the �le size distribution, because some �les may be

transferred multiple times, while others may never be transferred. This distribution

is a Pareto and a¤ects appropriately the network.

3. The �Popularity�distributional model describes the number of requests made to each

single �le on the server. This probability distribution follows Zipf�s Law and is related

to the previous two.

The �Embedded References�distributional model captures the structure of embedded

web objects. This probability distribution follows Pareto distribution and describes

how many objects (images, texts, sounds, etc.) embedded in each web page are

required to display the result correctly. OFF times between embedded references (Ac-

tive OFF times) are typically shorter than OFF times between web objects themselves

(Inactive OFF times). Server logs do not store the number of embedded references

fetched for a particular web page.

34

4. The �Temporal Locality�distributional model describes the probability that, once a

�le has been requested, it will be requested again in the near future. This proba-

bility distribution is modeled using lognormal distribution and exercises the caching

e¤ectiveness.

5. The �inactive OFF Times� distributional model is necessary to capture the bursty

nature of requests of individual web user�s requests, and follows a Pareto distribution.

6. The �active OFF Times� distributional model reproduces the time to transfer web

objects. The Weibull distribution gives a good �t with empirical values. Embedded

References of a web object are considered to be the sequence of �les fetched by a given

user for which the OFF time between transfers was less than a given threshold (1sec).

4.5 Network emulation

Web servers have to run over Wide Area Networks (WANs). Thus, any application on web

servers must take into consideration real life network delays and packet loss, and other para-

meters. An application designed only for a LAN environment will not work properly when

used over the Internet. Lab environments are not in�uenced by the real world Internet, thus

the motivation for a WAN Emulator is to provide a way to reproduce Internet conditions

in a lab environment.

The Internet environment includes:

� Packet loss which results from busy or congested network links with lots of errors.

� High delay comes from carriage of IP datagrams across low speed or long distance

links (e.g. in the case of satellite).

� Delay variation comes from the bursty nature of most IP tra¢ c that results in varying

35

amounts of bu¤ering of data occurring for a given network connection over time.

� The bandwidth limitation in the forward and backward directions comes from the

diversity of network technologies such as ADSL which provide more bandwidth in one

direction than other.

Many network emulators exist. Nistnet, Dummynet and Netem are network emulation

software packages that are similar in design and can be run on the Linux operating system

to emulate the properties of wide area networks. Nistnet [42] was developed by the National

Institute of Standard and Technology (NIST). Nistnet is a patch for 2.4 Linux kernels that

allows packets drops, packets delays and connection bandwidth limiting. Dummynet [44]

is a part of the FreeBSD system that simulates network delays and loss by manipulating

the IP queue inside the kernel. Netem [45] emulates wide area network delays, packet loss,

packet duplication, packet corruption, packet re-ordering and packet rate control.

Netem is built using Quality of Service (QoS) and Di¤erentiated Service (Di¤serv) and

con�gured by the command line tool �tc�which is already enabled in the Linux kernel 2.6.

Netem was used in this work since it is included under the kernel 2.6 and it provides the

necessary options to emulate real world networks. Netem is a classful queuing discipline

which can add delay, loss, duplication, or reordering of packets as arguments to the tc

command.

4.6 Tuning parameters
4.6.1 Tuning Apache web server

Apache�s main con�guration �le is httpd.conf. There are several parameters that can be

modi�ed to improve performance. We used the default con�guration of Apache, except

for the maximum number of connections, by changing MaxClients value. This parameter

36

sets the upper bound on the number of processes that Apache can have running concur-

rently. Larger values allow larger numbers of clients to be served simultaneously. Very

large values may require Apache to be re-compiled. The default value of MaxClients is

256. We change MaxClients to 2500 to increase the number of simultaneous requests that

can be supported by the server. To con�gure more than 256 clients, we edit the #de�ne

HARD_SERVER_LIMIT from 256 to 4096 in httpd.h �le and recompile the code.

4.6.2 Tuning the operating system at the server

A web server is supported by the operating system which has a large e¤ect on server

performance. Under Linux, it is possible to set certain kernel parameters by using the

echo command. By bene�t from �TCP Tuning Guide� [48] and in order to achieve better

performance we run the following script to set some tuning parameters on Linux.

#!/bin/bash

echo "10000000" > /proc/sys/net/core/wmem_max

echo "10000000" > /proc/sys/net/core/rmem_max

echo "10000000" > /proc/sys/net/core/rmem_default

echo "12000" > /proc/sys/net/ipv4/tcp_max_syn_backlog

echo "2000000" > /proc/sys/net/ipv4/tcp_max_tw_buckets

echo "400000" > /proc/sys/net/core/netdev_max_backlog

echo "500000" > /proc/sys/fs/�le-max

ifcon�g eth0 txqueuelen 30000

Increasing the size of the send socket bu¤er size is done by echo wmem_max and in-

creasing the size of the receive socket bu¤ers size is done by echo rmem_max. Increasing

the amount of memory available to the TCP/IP input queue by setting the default value

rmem_default and maximum value rmem_max. Increasing the number of TCP SYN pack-

ets that the server can queue before SYNs are dropped by increasing tcp_max_syn_backlog

value. And increasing the number of TCP connections that are allowed in the TIME-WAIT

37

state by tcp_max_tw_buckets value. The netdev_max_backlog value sets the length for

the number of packets that can be queued in the network core (below the IP layer).This

allows more memory to be used for incoming packets, which would otherwise be dropped.

Increasing the �le descriptor limit is done by increasing �le-max value. Finally, to increase

the length of the interface con�guration issue "ifcon�g eth0 txqueuelen 30000" command.

38

CHAPTER V

RESULTS AND ANALYSIS

In this chapter we summarize the results. The mean response time is taken as the main

performance metric from the client�s view. We compare the performance of Shortest-

Remaining-Response-Time (SRRT) with Shortest-Remaining-Processing-Time (SRPT) be-

cause SRPT is an optimally e¢ cient algorithm for minimizing mean response time [18].

However, the optimal e¢ ciency of SRPT comes at the expense of starvation of large �les.

Thus, to study the starvation under SRRT, we compare SRRT with Processor-Sharing (PS).

Since PS is the default scheduling policy in Linux, we rely to PS as a basis for de�ning the

fairness. The fairness constraint dictates that under any algorithm no requests should �nish

later than under PS [12].

5.1 Experiment run

The SURGE workload generator was used to generate the server load. More than 650

thousand requests were generated in each experiment run. We used 2000 di¤erent �le sizes

at the server. Most �les have a size less than 10KBytes. The requested �le sizes ranged

from 77Bytes to 3MBytes. Figure 10 shows the distribution of requests and bytes of the

workload.

In our experiment, we represent the system load by the number of concurrent users,

de�ned as the number of user�s equivalents (UEs) generated by the SURGE workload gen-

erator. The web server was run under di¤erent loads (numbers of UEs). The UEs vary from

60 to 1200 for the link capacity of 100Mbps, and from 18 to 360 UEs for the link capacity

39

Figure 10: Distribution of the requests and bytes

of 10Mbps. In the case of a 100Mbps link, 960 UEs saturated the link. So at 960 UEs the

system load is 100%. For a 10Mbps link, 120 UEs can saturate the link.

For each number of UEs, the experiment is run for 15 minutes to ensure that all jobs

were completed. For each run we measure the corresponding mean response time at the

client side by using the pbvalclient program from the SURGE package. SURGE generates

an output log �le that has the following format:

<client ID>, <process ID>, <session ID>, <starttime(sec)>, <starttime (usec)>, <URL>,

<�le size>, <endtime (sec)>, <endtime (usec)>

The pbvalclient program uses the log �le to print out the mean response time for all n

requests (RT =

nP
r=1
RT (r)

n
).

In our experiments we assume that clients experience heterogeneous WANs. We have

divided our experimental space into six WANs; where each of the six client machines repre-

sents a di¤erent WAN that shares common WAN parameters by enabling netem (network

emulator). The WAN factors on each client machine are shown in the Table 2. We exper-

iment with delays between 50ms and 350ms and loss rates from 0.5% to 3.0%. This range

40

of values was chosen to cover values reported in the Internet Tra¢ c Report [63] where the

maximum reported value for RTT is 380ms. These WAN parameters applied to incoming

(ingress) packets on the network interface of client machines as shown in Figure 11.

Figure 11: Linux tra¢ c control (ingress and egress)

WANs RTT(ms) loss (%)
WAN1 50� 10 0:5

WAN2 100� 20 1:0

WAN3 150� 30 1:5

WAN4 200� 40 2:0

WAN5 250� 40 2:5

WAN6 350� 50 3:0

Table 2: De�nition of WANs parameters

5.2 Important comments

We make some important comments about our experiment before presenting the results:

1. The network link is the bottleneck for all runs. Neither the CPU utilization nor the

memory usage is the bottleneck at the server. For all runs under PS, SRPT and SRRT

under 100Mbps link we monitor the CPU and RAM utilizations. The CPU utilization

did not exceed 45% at the highest load (1200UEs) and the memory usage did not

exceed 75%; no memory swaps occurred. For the10Mbps link, the CPU utilization is

less than 7% and memory usage less than 55% for 360UEs (maximum load). Also,

41

at the client machines the CPU utilization did not exceed 5% and memory usage was

less than 30% at the maximum load (1200 UEs) with a 100Mbps link.

2. For all experiments, the number of concurrent connections did not reach the maximum

number of Apache processes (MaxClients) which we set to 2500.

3. The overhead for updating the priorities in SRRT and SRPT is negligible, and involv-

ing insigni�cant CPU overhead.

4. The same SURGE parameters were used for all the PS, SRPT and SRRT experiments.

5. In computing the mean response time, SURGE considers only those requests that

completed. Thus, each experiment is run for 15 minutes to ensure that all jobs com-

plete.

6. Although each scheduling policy has its own way of scheduling requests, they all mange

to keep the link fully utilized (especially in the overload case). So the throughput is

the same under PS, SRPT and SRRT.

5.3 Main results

We want to compare our algorithm, SRRT, with the existing algorithms, namely PS and

SRPT. We analyze our observations from the client�s point of view in terms of mean response

time under the 10Mbps and 100Mbps link capacity.

The graphs in Figure 12 shows the mean response time for all WANs as a function

of server load (number of UEs) for the 10Mbps and 100Mbps link capacities. Sine the

workload was generated using six client machines; we just merge and sort the log �les from

the various clients into a single log �le and then run the pbvalclnt program on to �nd the

mean response time of all WANs. SRRT and SRPT show an improvement in the mean

42

response time over PS. Also, the SRRT shows an improvement over SRPT.

0 100 200 300 400
0

1

2

3

4

5

6

7

8

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

 Mean Response T ime of all WANs Under 10Mbps

0 200 400 600 800 1000 1200
0.35

0.4

0.45

0.5

0.55

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

Mean Response T ime of all WANs Under 100Mbps

PS
SRPT
SRRT

PS
SRPT
SRRT

Figure 12: Mean response time of all WANs under 10Mbps and 100Mbps

Table 3 shows the improvement percentage of SRRT over SRPT and PS, in addition to

the percentage improvement of SRPT over PS for the two di¤erent link capacities; 10Mbps

and 100Mbbps. For each number of UEs, we concatenate all clients log �les together in one

�le to �nd the mean response time at the corresponding UE. Then we calculate the average

/maximum over the total range of UEs.

Improvement Link SRRT:SRPT SRRT:PS SRPT:PS
Average 10Mbps 7:5% 13:6% 6:8%
Max. 13:2% 24:2% 13:7%

Average 100Mbps 7:4% 7:1% 2:6%
Max. 11:6% 16:2% 5:8%

Table 3: Percentage improvement of SRRT and SRPT

To see in detail what is going on in each WAN, the graphs in Figure 13 and Figure 14

show the mean response time at the client side as a function of the server load (number of

UEs) for WAN1 to WAN6. Each graph corresponds to a di¤erent WAN (a PC with netem)

with di¤erent RTT, and loss rate. Each graph shows three curves, one for PS, one for SRPT

43

and one for SRRT.

5.3.1 Results for 10Mbps link capacity

From the graphs shown in Figure 13 we can observe that the graphs for the di¤erent WANs

generally show almost similar behavior with respect to the mean response time. SRRT and

SRPT show an improvement in the mean response time over PS. This improvement comes

from the fact that the bandwidth is shared for all requests under PS. So all incomplete

requests still take a fair share of the bandwidth from other requests. Hence, the mean

response time of short requests (small �les in SRPT, and short time in SRRT) increases.

While under the SRRT and SRPT, long requests do not receive any bandwidth and short

requests are completely isolated from the long requests. Therefore, completing short re-

quests �rst and then long requests does not increase the mean response time by giving the

chance to the small requests to complete �rst without competition from long requests. As a

result, the PS shows a faster increase in mean response time than under SRRT and SRPT.

SRRT has the best results especially at high loads. This is likely because our approach

includes, in addition to the server delay, the transmission delay which forms a large portion

of the total communication delay in the Internet environment. For low loads, the three

algorithms show almost similar mean response time. Since for low load the available link

capacity is large enough to serve all requests, which in turn results in keeping the number

of packets in the transmission queue small so that the e¤ect of scheduling is not noticeable.

However, in the low load case the RTT dominates the total communication delay so SRRT

shows better behavior over SRPT in this region.

Signi�cant improvement in performance tend to start at the point of which the link

become saturated. For high load but before the link saturates (UEs <162), the improvement

of SRRT over SRPT starts to become noticeable. For high load (UEs > 198), the SRRT

44

0 100 200 300 400
0

2

4

6

8

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN1

0 100 200 300 400
0

2

4

6

8

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN2

0 100 200 300 400
0

2

4

6

8

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN3

0 100 200 300 400
0

2

4

6

8

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN4

0 100 200 300 400
0

2

4

6

8

10

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN5

0 100 200 300 400
0

2

4

6

8

10

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
)

WAN6

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

Figure 13: Mean response time as a function of workload for di¤erent WANs through
10Mbps link

45

0 200 400 600 800 1000 1200
0.1

0.15

0.2

0.25

0.3

0.35

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

 (
se

c)

WAN1

0 200 400 600 800 1000 1200
0.15

0.2

0.25

0.3

0.35

0.4

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

 (

se
c)

WAN2

0 200 400 600 800 1000 1200
0.3

0.35

0.4

0.45

0.5

0.55

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

 (
se

c)

WAN3

0 200 400 600 800 1000 1200
0.4

0.45

0.5

0.55

0.6

0.65

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

(s

ec
)

WAN4

0 200 400 600 800 1000 1200
0.45

0.5

0.55

0.6

0.65

0.7

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

 (
se

c)

WAN5

0 200 400 600 800 1000 1200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Load (UEs)

M
ea

n
R

es
po

ns
e

Ti
m

e

 (s
ec

)

WAN6

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

PS
SRPT
SRRT

Figure 14: Mean response time as a function of workload for di¤erent WANs through
100Mbps link

46

shows a great improvement over the SRPT for all WANs. Tables 4 and 5 show some

statistics about the improvement of SRRT over SRPT for all WANs.

WANs Average Improvement (%)
SRRT:SRPT SRRT:PS SRPT:PS

WAN1 6:3 13:9 8:3

WAN2 7:0 13:9 7:5

WAN3 7:2 13:8 7:4

WAN4 7:8 13:8 6:7

WAN5 8:1 13:7 6:3

WAN6 8:2 12:6 4:9

Table 4: Average improvement percentage for 10Mbps link

WANs Max. Improvement (%)
SRRT:SRPT SRRT:PS SRPT:PS

WAN1 12:0 28:4 18:7

WAN2 12:7 24:4 13:5

WAN3 15:9 25:8 14:4

WAN4 12:9 23:4 13:3

WAN5 14:4 24:9 14:5

WAN6 14:2 23:8 11:9

Table 5: Max. improvement percentage for 10Mbps link

The average percentage improvement of SRRT and SRPT over PS for 10Mbps for all

WANs is shown in Figure 15. The network WAN1 has the best network conditions (Delay

and loss) compared to other networks, so the requests get higher priorities under SRRT and

therefore minimize the mean response time. So WAN1 has the best average improvement

percentage in SRRT over PS the other WANs.

Also, we can see that bad network conditions decrease the improvement of both SRRT

and SRPT scheduling techniques over PS. However, SRPT is more a¤ected by bad network

conditions than SRRT since it uses only the �le size to approximate the expected response

time. Server delay dominates the response time for the case of a network with no loss,

and in which we ignore RTT. In contrast, under bad condition WANs (large RTT and high

47

Figure 15: Average improvement of SRRT and SRPT over PS for 10Mbps link

loss rate) the transmission and retransmission delays are the dominant parts of the com-

munication delay rather than the delay at the server. The mean response time increases as

the RTT and the loss rate increase. Higher RTTs make loss recovery more expensive since

the RTO (retransmission time-outs) depends on the estimated RTT. Hence, lost packets

cause very long delays based on the RTT and RTO values in TCP. SRRT takes these into

consideration indirectly, TCP throughput for a connection being inversely proportional to

the square root of the loss [64], by decreasing the cwnd. When losses increase the cwnd de-

creases. Accordingly, the estimated response time in SRRT increases, so the corresponding

connection receives less priority. Therefore, SRRT improvement is slightly decreased by the

poor network conditions. As mentioned in [21], �While propagation delay and loss diminish

the improvement of SRPT over PS, loss has a much greater e¤ect". SRRT considers the

user�s network conditions by bene�ting from the TCP interaction between the server and

the network to take into consideration the realistic WAN factors that can dominate the

mean response time.

48

5.3.2 Results for 100Mbps link capacity

Also for the 100Mbps link, SRRT shows the best results, especially at a high loads (Tables 6

and 7). For high load, but before the link saturates (780 < UEs < 900), the improvement of

SRRT over SRPT starts to come into view. For high load (UEs > 900), the SRRT shows an

improvement over the SRPT for all WANs. The average improvement in SRRT and SRPT

over the PS is shown in Figure 16. The bad networks e¤ect on both SRRT and SRPT also

appears for 100Mbps.

WANs Average Improvement (%)
SRRT:SRPT SRRT:PS SRPT:PS

WAN1 5.2 9.6 4.9
WAN2 5.0 8.1 3.4
WAN3 5.0 7.3 2.5
WAN4 5.2 7.2 2.3
WAN5 4.9 6.9 2.2
WAN6 3.8 5.9 2.2

Table 6: Average improvement percentage for 100Mbps link

WANs Max. Improvement (%)
SRRT:SRPT SRRT:PS SRPT:PS

WAN1 16:6 25:8 11:1

WAN2 12:0 20:3 9:7

WAN3 12:3 16:2 5:1

WAN4 13:8 17:4 5:6

WAN5 12:8 16:4 5:8

WAN6 9:1 12:4 4:7

Table 7: Max. improvement percentage for 100Mbps link

From the above we can see that the SRRT always works well under all network condi-

tions, no matter which component of the total communication time dominates since it takes

into consideration the RTT and the TCP throughput rate, in addition to the �le size, in

49

WAN1 WAN2 WAN3 WAN4 WAN5 WAN6
2

3

4

5

6

7

8

9

10
Average Improvement for 100Mbps

Load (UEs)

A
ve

ra
ge

 Im
pr

ov
em

en
t (

%
)

SRRT/PS
SRPT/PS

Figure 16: Average improvement of SRRT and SRPT over PS for 100Mbps link

approximating the response time.

5.3.3 Starvation analysis

To see whether the improvement in mean response time comes at the expense of starvation

for long requests, we look to the response time for each individual request under SRPT

and SRRT scheduling algorithms. To quantify the starvation, we use the starvation stretch

metric which is introduced in [12]. Starvation stretch Sx(r) of request r under algorithm

X is the ratio of response time RTx(r) under algorithm X to response time RTps(r) under

PS:

Sx(r) =
RTx(r)

RTps(r)

The starvation occurs under the algorithm X if the Sx(r) > 1.

5.3.3.1 Starvation under SRPT

Under SRPT, we found that 2.3% of the response has starvation stretch greater than 1 under

the 100Mbps link capacity, and the largest �le (3119822Bytes) has a starvation stretch of

50

2.1. Under the 10Mps capacity, 2.6% of the response times starved. The largest �le has a

starvation stretch of 2.4.

Mor Harchol et al. [13] show that for job size distributions with the heavy tailed property,

more than 98% of the requests have a considerable improvement in mean response time

under SRPT compared with PS.

Figure 10 shows the distribution of requests and bytes of our workload. About 82.9%

of the requests are for �les smaller than 16KB and they represent 11.55% of the total

requested bytes. If the server gives preference to small �les (less than 16kB), 88.45% of

the server resources will be in use for remaining 17.09% of large �les (greater than 16kB).

Only 1.44% of the large requests (greater than 128kB) form 62.54% of the requested bytes.

Considering this property of the workload, most of the server resources will be dedicated to

large requests. So the large request will be negligibly penalized under SRPT and SRRT as

compared with the PS scheduling.

5.3.3.2 Starvation of SRRT

SRRT is based on SRPT, but it di¤ers in the way that estimates the response time. The

SRRT shows better performance than SRPT since it has more information about the re-

sponse time. For SRRT only 1.5% of the long response starved under the 100Mbps link.

The longest response has a starvation stretch 1.7. Under the 10Mbps, 2.4% of the requests

starved. The longest response has a starvation stretch 2.2.

5.3.4 Sources of performance of SRRT over SRPT

SRPT assumes that the response time of a request is strongly correlated with the size of

the requested �le. Dong Lu [25] shows that the correlation between the response time and

the �le size is unwarranted. This low correlation between the �le size and the response time

51

comes from the nature of large networks that show path diversity to the clients; every path

will likely have a di¤erent RTT and di¤erent bandwidth of the path. So the response time

is not strongly correlated with the �le size. Therefore, SRPT is strongly a¤ected by this

weak correlation between the �le size and the response time [25].

Although the transfer time is likely to be dominated by the transmit delay and RTT

of the path, there are other possible delays, due to packet loss and congestion. Thus, the

complexity and the diversity of the WAN environment suggest that the response time of

requests may not be proportional to the size of the �le it serves. This led us to �nd better

estimators for response time using SRRT which make scheduling policy perform better. Our

approach tries to gain a more exact knowledge of the response times:obtained from TCP to

improve web server performance.

Our approach adds an additional overhead compared to SRPT since it needs to call

getsockopt() to get the RTT and the cwnd. However, this additional overhead is not critical

under the assumption that the CPU is not the bottleneck. We found about a 1% increase

in the CPU utilization under SRRT over the SRPT.

52

CHAPTER VI

CONCLUSION AND FUTURE WORK

The client-server architecture is mainly used in the Internet environment which has high

diversity in bandwidth, propagation delay and packet loss rate. Therefore, the SRPT as-

sumption that �le size is a good approximation for the total response time for a static

request on a web server is not accurate and the performance of SRPT degrades dramati-

cally in a WAN environment. For that reason, we proposed SRRT to better estimate the

response time by getting useful TCP information, which is available at web server about

the connection, in addition to the �le size, without producing additional tra¢ c. The SRRT

uses the RTT and the congestion window size and the �le size to approximate the response

time. The request with shortest SRRT receives the highest priority.

We proposed, implemented and evaluated a new scheduling policy for web servers. The

proposed policy, SRRT, improves the client-perceived response time, which is the main fac-

tor determining the request scheduling policy, in comparison to the default Linux scheduling

(PS) and the SRPT scheduling policies. The SRRT performs better than SRPT and PS at

high and moderate uplink load and especially under overload condition. The performance

improvement is achieved under di¤erent uplink capacities, for a variable range of network

parameters (RTT�s and loss rate). This improvement does not unduly penalized the long

requests and without loss in byte throughput.

The implementation of SRRT was done on an Apache web server running Linux to

prioritize the order that the socket bu¤ers are drained within the kernel. The priority

53

of the requests is determined based on the priority array values we have coded in the

Apache source code. The choice of these values is based on the experiment trials. After

experimenting with di¤erent values, we found that the values adopted gave us good results.

But we do not claim that this choice is optimal. Also, it is better to make these values

con�gurated by the Apache con�guration �le to enable the administrator to change them

as needed.

Another improvement on SRRT may be done by trying to take other factors that may

a¤ect the response time like queue delay approximation and the TCP connection loss rate.

In evaluating of SRRT, we represent the WAN environment with di¤erent RTTs and loss

rates by using a network emulator. We have not been able to evaluate all real world

application parameters. To check the validity of this algorithm, it is better to test it on a

real web server. Also, it is good to evaluate the SRRT algorithm analytically to examine

the validity of the experimental results.

The SRRT is applied to static web requests with heavy tailed distribution �le sizes.

Future work can be enhancing it to also schedule dynamic requests where the approximation

of the response time is not as easy as for static requests. Also, this work may extend to

other operating systems and for other �le size distributions.

We believe that SRRT scheduling will continue to be applicable in the future, although

better link speeds become available and the bandwidth cost decreases. Due to �nancial

constrains, many users will not upgrade their connectivity conditions. Also, the variance

in network distance and environment will persist and diversity in delay will be continue to

exist.

54

55

REFERENCES

[1] A. M. Odlyzko. �Internet tra¢ c growth: Sources and implications.�Optical
Transmission Systems and Equipment for WDM Networking II, vol. 5247, pp. 1-15,
2003.

[2] J. Nielsen. "One billion Internet users." Internet:
http://www.useit.com/alertbox/internet_growth.html, Dec. 19, 2005.

[3] :Internet World stats: usage and population statistics."
Internet:http://www.internetworldstats.com/stats.htm, Jun. 10, 2007.

[4] D.Sullivan. "Searches per day." Internet:
http://searchenginewatch.com/reports/article.php/2156461, Apr. 20, 2006.

[5] A. B. King. "Speed up your site: web site optimization." Internet:
http://www.websiteoptimization.com/speed, Jan. 17, 2003.

[6] J. Nielsen. "The need for speed." Internet:
http://www.useit.com/alertbox/9703a.html, Mar. 1, 1997.

[7] D. Kegel. "The C10K problem." Internet: http://www.kegel.com/c10k.html, Sep. 02,
2006.

[8] M. Crovella, R. Frangioso, and M. Harchol-Balter. "Connection scheduling in web
servers." USENIX Symposium on Internet Technologies and Systems, Oct. 1999.

[9] M. Harchol-Balter, M. Crovella, S. Park. "The case for SRPT scheduling in web
servers." Tech. Rep. MIT-LCS-TR-767, Carnegie Mellon School of Computer Science,
Oct. 1998.

[10] M. Rawat and A. Kshemkayani. "SWIFT: Scheduling in web servers for fast response
time." Second IEEE International Symposium on Network Computing and
Applications, Apr. 2003.

[11] M. Harchol-Balter, N. Bansal, B. Schroeder, and M. Agrawal. "Implementation of
SRPT scheduling in web servers." Tech. Rep. CMU-CS-00-170, Carnegie Mellon
School of Computer Science, Oct. 2000.

[12] C. Jechlitschek and S. Gorinsky. �Fair E¢ ciency, or Low Average Delay without
Starvation.�Tech. Rep. WUCSE-2007-16, Washington University in St. Louis, US,
Feb. 28, 2007.

[13] N.Bansal and M. Harchol-Balter. "Analysis of SRPT scheduling: investigating
unfairness." ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, pp.
279-290, June 2001.

[14] P. Barford and M. E. Crovella." Critical path analysis of TCP transactions." ACM
SIGCOMM Computer Communication Review, vol. 31, no. 2, pp. 80-102, Apr. 2001.

56

[15] S. Manley and M. Seltzer. "Web facts and fantasy." Proceedings of the 1997 Usenix
Symposium on Internet Technologies and Systems (USITS-97), 1997.

[16] C. D. Murta and T. P. Corlassoli. "Fastest connection �rst: A new scheduling policy
for web servers." In the 18th International Teletra#c Congress (ITC-18), Sep. 2003.

[17] L.E. Schrage and L. W. Miller. "The queue M/G/1 with the shortest remaining
processing time discipline." Operations Research, vol.14, no. 4, pp. 670-684, Jul. 1966.

[18] L. E. Schrage. "A proof of the optimality of the shortest remaining processing time
discipline." Operations Research, vol.16, no. 3, pp. 678-690, 1968.

[19] D. R. Smith. "A new proof of the optimality of the shortest remaining processing
time discipline". Operations Research, vol. 26, no. 1, pp. 197-199. Jan.1976.

[20] C. Goerg. "Evaluation of the optimal SRPT strategy with overhead." IEEE
Transactions on Communications, vol. 34, pp. 338-344. Apr. 1986.

[21] M. Harchol-Balter, B. Schroeder, M. Agrawal, N. Bansal. "Size-based scheduling to
improve web performance." ACM Transactions on Computer Systems (TOCS), vol.
21, no. 2, pp. 207-233, May 2003.

[22] B. Schroeder and M. Harchol-Balter. "Web servers under overload: How scheduling
can help." ACM Transactions on Internet Technology (TOIT), vol. 6, no. 1, pp.
20-52, Feb. 2006.

[23] M.Gong and C.Williamson. "Quantifying the properties of SRPT scheduling".
Modeling, Analysis and Simulation of Computer Telecommunications Systems
(MASCOTS), pp. 126-135, Oct. 2003.

[24] E.. J. Friedman and S. G. Henderson. "Fairness and e¢ ciency in web server
protocols." ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pp. 229-237, 2003.

[25] D. Lu, H. Sheng, P. A. Dinda. "E¤ects and implications of �le size/service time
correlation on web server scheduling policies." Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 258-267, Sep. 2005.

[26] N. Bansal. "On the average sojourn time under M/M/1 SRPT." ACM SIGMETRICS
Performance Evaluation Review, vol. 31, no. 2, pp. 34-35, September 2003.

[27] N.Bansal and D. Gamarnik. "Handling load with less stress." Queueing Systems, vol.
54 , no. 1, pp. 45-54, Sep. 2006.

[28] M. Harchol-Balter, K. Sigman, A.Wierman. "Asymptotic convergence of scheduling
policies with respect to slowdown." Performance Evaluation, vol. 49, no.1-4, pp.
241�256, Sep. 2002.

[29] J. Guitart, V. Beltran, D. Carrera, J. Torres, E. Ayguadé. "Session-based adaptive
overload control for secure dynamic web application." International Conference on
Parallel Processing (ICPP2005), vol. 00, pp. 341-349, Jun. 2005.

57

[30] X. Chen, H. Chen, P.Mohapatra. ACES: "An e¢ cient admission control scheme for
QoS-aware web servers." Computer Communications, vol. 26, no.14, pp. 1581-1593,
Sep. 2003.

[31] M.Welsh and D.Culler. "Adaptive overload control for busy Internet servers." 4th
Symposium on Internet Technologies and Systems, Seattle, WA, USA. Mar. 2003.

[32] S. Elnikety, E. Nahum, J. Tracey, and W Zwaenepoel. "A method for transparent
admission control and request scheduling in e-commerce web sites." 13th
International Conference on World Wide Web (WWW 2004), pp. 276-286, New York,
NY, USA. May 2004.

[33] B.Krishnamurthy, Craig E. Wills. "Improving web performance by client
characterization driven server adaptation." 11th international conference on World
Wide Web (WWW2002), pp. 305-316, Honolulu, Hawaii, USA, May 2002.

[34] P. Barford and M.Crovella. "Generating representative web workloads for network
and server performance evaluation." ACM joint international conference on
Measurement and modeling of computer systems, pp. 151-160, Jun. 1998.

[35] Standard Performance Evaluation Corporation." SPECweb96 and SPECweb99."
Internet: http://www.spec.org, May 23, 2007.

[36] hp research labs. "Httperf: HTTP benchmarking utility." Internet:
http://www.hpl.hp.com/research/linux/httperf, Jun. 10, 2005.

[37] "Di¤erentiated Services on Linux." Internet: http://di¤serv.sourceforge.net, May 29,
2001.

[38] W. Almesberger. "Linux tra¢ c control - next generation." Internet:
http://tcng.sourceforge.net, Oct. 2002.

[39] M. A. Brown." Tra¢ c control HOWTO." Internet:
http://linux-ip.net/articles/Tra¢ c-Control-HOWTO/classless-qdiscs.html, Oct. 2006.

[40] T. Graf, G. Maxwell, R. Mook, M. Oosterhout, P. Schroeder, J. Spaans and P.
Larroy. "Linux advanced routing & tra¢ c control HOWTO." Internet:
http://lartc.org/howto.

[41] L. Balliache. "Di¤erentiated service on Linux HOWTO." Internet:
http://www.opalsoft.net/qos/DS-23.htm, Aug. 2003.

[42] National Institute of Standard and Technology. "The NIST Net network emulator."
Internet: http://snad.ncsl.nist.gov/nistnet, Mar. 14 , 2001.

[43] V. N. Padmanabhan and K. Sripanidkulchai. "The Case for Cooperative
Networking", IPTPS,vol. 2429, Mar. 2002.

[44] L.Rizzo. "Dummynet network emulator." Internet:
http://info.iet.unipi.it/~luigi/ip_dummynet.

[45] "Network Emulation (Netem)." Internet: http://linux-net.osdl.org/index.php/Netem,
8 Apr. 8, 2007.

58

[46] B. Curry, T. Writer, G. V. Reilly, IIS Performance Team, and H. Kaldestad, ITG
Internet Hosting Services." The art and science of web server tuning with Internet
information services 5.0." Internet:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/
optimize/iis5tune.mspx, Mar. 9, 2001 [Jun. 10, 2007].

[47] C. MacC´arthaigh. "Scaling Apache 2.x beyond 20,000 concurrent downloads."
Internet:
http://www.stdlib.net/~colmmacc/Apachecon-EU2005/scaling-apache-handout.pdf,
Jul. 21, 2005.

[48] Lawrence Berkeley National Laboratory." TCP Tuning Guide." Internet:
http://dsd.lbl.gov/TCP-tuning/linux.html, Feb 13, 2006.

[49] RFC 793 �Transmission Control Protocol, September 1981.

[50] RFC 1122 - Requirements for Internet Hosts - Communication Layers, October 1989.

[51] RFC 1323 - TCP Extensions for High Performance, May 1992.

[52] RFC 2018 - TCP Selective Acknowledgment Options, October 1996.

[53] RFC 2581 �TCP Congestion Control, April 1999.

[54] RFC 2988 - Computing TCP�s Retransmission Timer, November 2000.

[55] RFC 3168 �The Addition of Explicit Congestion Noti�cation (ECN) to IP,
September 2001.

[56] RFC 3390 �Increasing TCP�s Initial Window, October 2002.

[57] RFC 3742 �Limited Slow-Start for TCP with Large Congestion Windows, March
2004.

[58] The NewReno Modi�cation to TCP�s Fast Recovery Algorithm, April 2004.

[59] P. Karn and C. Partridge. "Improving round-trip time estimates in reliable transport
protocols." ACM SIGCOMM Computer Communication Review, vol. 25, no. 1, pp.
66-74, Jan. 1995.

[60] V. Jacobson. "Congestion avoidance and Control." ACM SIGCOMM Computer
Communication Review, vol. 25, no.1, pp. 157-187, Jan. 1995.

[61] D. Comer. Internetworking with TCP/IP, vol.1 (5th edition), pp. 212-213, Jan. 2005.

[62] http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html and
http://cities.lk.net/tcp.html.

[63] "Internet Tra¢ c Report. 2007." Internet: http://www.internettra¢ creport.com

[64] J. Padhye, V. Firoiu, D. F. Towsley, , and J. F. Kurose. "Modeling tcp reno
performance: A simple model and its empirical validation." IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 2, pp133-145, Apr. 2000.

59

APPENDIX A

SHORTEST TOTAL ESTIMATED RESPONSE TIME
(STERT)

In the STERT, the priorities are given to the requests based on the shortest total estimated

response time (STERT) and not only on the remaining estimated response time (RRT).

The total estimated response time (TERT) is the sum of the elapsed time (ET) between

the start of the transmission for a request and the remaining response time (RRT). To

determine the elapsed time (ET), we need to know the start time for each request and the

current time. If we know these values, the elapsed time will be the current time (CT) minus

the request start time (RST).

ET = CT �RST

In Apache code, the request object (r->request_time) stores the request start time,

so we get it without an additional system call. To obtain the current time, we use the

gettimeofday() function.

Thus, the total estimated response time (TERT) is

TERT = RRT + ET

ET is exactly known, while RRT is an estimate value. The RRT can be approximated

as follows:

RRT = RTT +
RFS

R

where RFS is the remaining �le size and R is the transfer rate for a connection

The estimated current maximum transfer rate (RC) for a connection can be approxi-

mated by:

60

RC =

�
cwnd

RTT

�1
RC is based on the current estimated RTT value and the current cwnd size from the

TCP_INFO.

The past transfer rate (RP) for a connection can be calculated by:

RP =
FS �RFS

ET
, where FS is the total �le size

We can estimate the transfer rate for a connection as follow:

R = �RP + (1� �)RC , where � = 0:9

Finally, we can write the total estimated response time (TERT) as follows:

TERT = (RTT +
RFS

R
) + ET

The �rst term (RTT +
RFS

R
) is an estimate value, while ET is an exact value.

As shown in Figure 17 the shortest total estimated response time (STERT) shows a

better improvement in mean response time over SRRT for all WANs as a function of server

Loads (number of UEs) under 10Mbps and 100Mbps link capacities. While SRRT shows the

best results over STERT, SRRPT, and PS. Thus, the scheduling based on the remaining

response time is better than the scheduling based on the total response time.

0 100 200 300 400
0

1

2

3

4

5

6

7

8

Load (UEs)

M
ea

n
R

es
po

ns
e

T
im

e
(s

ec
)

The Mean Response Time of all WANs Under 10Mbps

0 200 400 600 800 1000 1200
0.35

0.4

0.45

0.5

0.55

Load (UEs)

M
ea

n
R

es
po

ns
e

T
im

e
(s

ec
)

The Mean Response Time of all WANs Under 100Mbps

PS
SRPT
SRRT
STERT

PS
SRPT
SRRT
STERT

Figure 17: Mean response time of all WANs under 10Mbps and 100Mbps

61

APPENDIX B

APACHE SOURCE CODE MODIFICATIONS

We modi�ed only two �les; http_protocol.c and http_core.c. The di¤s for these �les were

shown below:

B.1 The modi�cations to implement SRRT
B.1.1 Changes to http_protocol.c �le

105a106,143

> /* Change to implement SRRT: */
> /* Here we add our function to set the priority of a �le corresponding to */
> /* the remaining data left to send for this �le */
>

> #include <netinet/tcp.h>
> void sctf_set_sock_prio(int fd, unsigned int remaining_len) {
>

> //modi�cation ...
> struct tcp_info tcpinfo;
> socklen_t leng;
>

> leng = sizeof(tcpinfo);
> getsockopt(fd, IPPROTO_TCP, TCP_INFO, &tcpinfo, &leng);
>

> unsigned int rtt_ms = tcpinfo.tcpi_rtt/1000;
> unsigned int mss = tcpinfo.tcpi_advmss;
> unsigned int cwnd_byte = (tcpinfo.tcpi_snd_cwnd)*mss;
>

> unsigned int comm_time;
> comm_time = rtt_ms + (remaining_len/cwnd_byte)*(rtt_ms);
>

> unsigned int prios[7] = { 0, 100, 500, 1000, 10000, 100000, 10000000};
> unsigned int prio;
> int i = 0;
>

> while((comm_time > prios[i]) && i<=6) {
> ++i;
> }
> prio=i;

62

>

> setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &prio, sizeof(prio));
> }
>

> /* End Change */
>

2157a2196,2203
>

> /* Change to implement SRRT: */
> /* update the priority of the socket */
>

> sctf_set_sock_prio(r->connection->client->fd, r->�nfo.st_size-total_bytes_sent);
>

> /* End change */
>

2326c2372
< if (length - o¤set > MMAP_SEGMENT_SIZE) {
�
> if (length - o¤set > MMAP_SEGMENT_SIZE) {
2333a2380,2387
>

> /* Change to implement SRRT: */
> /* update the priority of the socket */
>

> sctf_set_sock_prio(r->connection->client->fd, length-o¤set);
>

> /* End Change */

B.1.2 Changes to http_core.c �le

3167a3168,3175
>

> /* Change to implement SRRT: */
> /* update the priority of the socket */
>

> sctf_set_sock_prio(r->connection->client->fd, r->�nfo.st_size);
>

> /* End Change */

B.2 The modi�cations to implement SRPT
B.2.1 Changes to http_protocol.c �le

105a106,126
> /* Change to implement SRPT: */
> /* Here we add our function to set the priority of a �le corresponding to */
> /* the remaining data left to send for this �le */
>

63

> unsigned int prios[7] = { 0, 1000, 10000, 15000, 30000, 1000000, 10000000};
>

> void srpt_set_sock_prio(int fd, unsigned int remaining_len) {
> unsigned int prio;
> int i = 0;
>

> while((remaining_len > prios[i]) && i<=6) {
> ++i;
> }
> prio=i;
>

> setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &prio, sizeof(prio));
> }
>

> /* End Change */
>

2157a2179,2187
>

> /* Change to implement SRPT: */
> /* update the priority of the socket */
>

> srpt_set_sock_prio(r->connection->client->fd, r->�nfo.st_size-total_bytes_sent);
>

> /* End change */
>

2326c2356
< if (length - o¤set > MMAP_SEGMENT_SIZE) {
�
> if (length - o¤set > MMAP_SEGMENT_SIZE) {
2333a2364,2371
>

> /* Change to implement SRPT: */
> /* update the priority of the socket */
>

> srpt_set_sock_prio(r->connection->client->fd, length-o¤set);
>

> /* End Change */

B.2.2 Changes to http_core.c �le

3167a3168,3175
>

> /* Change to implement SRPT: */
> /* update the priority of the socket */
>

> srpt_set_sock_prio(r->connection->client->fd, r->�nfo.st_size);
>

> /* End Change */

64

